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ABSTRACT

The estimation of time delay and Doppler difference of a signal arriving at two
physically separated sensors is investigated in this thesis. Usually, modified cross power

spectrum coupled with Doppler compensation is used to detect a common, passive signal

received at two separated sensors. Another successful approach uses the cross coherence

to achieve this goal. This thesis modifies these two techniques to model the Doppler

difference via an autoregressive (AR) technique. Analytical results are derived and ex-

perimentally verified via a computer simulation. Performance at high and low signal to

noise ratios ( SNRs ) is examined.
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I. INTRODUCTION

This thesis investigates the use of autoregressive (AR) models for estimating the
Doppler difference and differential time delay by processing of a narrow band signal

emitted from a moving source and received at two physically separated sensors. If the

signal is received at two different geographical positions even in the presence of uncor-

related noise, then. depending on the signal strength and duration, it is possible to esti-

mate the differential time delay.

Because the source is moving, the signals that are received at the sensors may have
different frequencies due to the Doppler effect. To obtain accurate differential time de-

lay estimation. Doppler difference compensation is usually required.

This compensation can be implemented by using frequency shifting of the narrow

band components of the received signal. This frequency shift can be obtained using a
Fourier transform. In this thesis we use an AR model to detect the frequency shift.
L sing this Doppler compensation. an estimate of differential time delay can be obtained.

Estimating the delay and Doppler using an AR model can be interpreted as a form of a
narrow band coherence procedure. provided the estimations are properly normalized.

This thesis is arranged in six chapters and six appendices. Because the estimation

of the time delay and Doppler is intimately related to the coherence between two trans-

formed complex signals. an extensive investigation of coherence is given in Chapter II.
In Chapter II. AR models. advantages of AR modeling, and AR model order selection
are presented. Chapter IN' is devoted to the analysis and the processing of noisy signals

to estimate the differential time delay and tl., Doppler diflerence. To estimate the dif-
ferential time delay, two approaches are pursued. AR model performance. Doppler es-
timation and two types of time delay estimation are examined in Chapter V. In the last
chapter some general conclusions of the work carried out in this thesis are presented, and

some suggestions for future investigations are given. Computer simulation programs are

included in Appendices E and F.



II. COHERENCE

A. DEFINITION
The coefficient of coherence between two wide sense stationary random proccsses

is the normalized cross power spectral density function defined by Wiener [Ref. 1: p. 12]

as

v ,., J) (2.1)

N G (f) Gyybf)

wheref denotes the frequercy (H:),

G,,(f) is the cross power spectrum between x(t) and y(t)

G,,(f) denotes the auto power spectrum of x(i) , and

G,,(t denotes the auto power spectrum of y()

Despite some confusion in the literature. Wiener intended for the coefficient of co-
herence to be complex. This is apparent since he discusses both the modulus and the

argument of the coefficient of coherence.

B. PROPERTY OF THE COHERENCE FUNCTION

The power spectral density matrix Q0 is positive semi definite. Therefore, for two

random processes x and y. we see that

,t [Qo] = det G.,f G.,. 1_0(2.2)

For real processes we have Go,(] = G/,.o and thus

GxxL/)G,,/ - IGxy/)l2>_ (2.3)

where * denotes the conjugate of a complex number. And

G.,(f)Gy(/) -G 1 G, 2  (2.4)

Furthermore, G,,(f) and G,.(f) are nonnegative, real functions of frequency. When

G,_(1) and G.,(J) are strictly positive definite ( i.e., G,,()G,(J) > 0 ), Eq. (2.4) can be di-

vided by G,(J)G:,0 without changing the sense of the inequality.
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This provides as an upper bound

, ,fI 1 Vf (2.5)

and since the magnitude of any complex number is greater than or equal to zero, we

have the lower bound
0 I 1 (2.6)

The magnitude of the coherence function is always between zero and one. It is zero

if the processes x(i) and y(r) are uncorrelated and it is equal to unity if there exists a

linear relationship between x(t) andy(t) . In order to define the coherence it is necessary

that the numerator and denominator of Eq. (2.1) are not simultaneously equal to zero.

Coherence is not defined if either auto spectra is zero.

C. COHERENCE ESTIMATION

If ,) denotes the Fast Fourier Transform (FFT) of the I th segment of x(n) at

frequencyf then the spectral density estimates are given by [Ref. 2: p. 22]

V

GxZr:)= , I X(f.) 12 (2.7)
i= I

V = O6)'fk)Y;U ) (2.8)

1=1

Gysfk) .. Y1'f)1
2  (2.9)

/--1

where a -

N = number of segments,

T = segment length. and

= sampling frequency.

Finallv the coherence estimation is



A

\Gxxfk)GY1(fk)

1=1

D. COHERENCE OF NARROW BAND SIGNALS WITH DIFFERENTIAL TIME

DELAY AND DIFFERENTIAL DOPPLER

The output of the band pass filters (BPF1 and BPF2) in Figure I are denoted by

A fk) and Y.,) respectively. Each term represents the Fourier transform of the corre-

sponding time series evaluated at frequency f, and time 1. For narrow band signals a

Doppler shift corresponds to a frequency shift. If a signal arrives at the two sensors
having a differential Doppler shift as well as a differential time delay, then we see that

a frequency compensation and time delay compensation by the appropriate values tend

to line up the signals in frequency and time. This is accomplished by using an additional

Fourier transform in channel-1 of the processor and a time delay in channel-2 of the

processor. Mathematically, this can be expressed as

N
lyff) I ?k+Yk)

--IXA!Dk)1211 l +d(fk) 2

Comparing this with Eq. (2.10), we see that we generalized the coherence concept. We

also note that the implementation resembles a correlator. where one of the signals is

frequency compensated and the time delay corresponds to the delay operation of the

correlator.

4



y 14d

Figure 1. Coherence estimation block diagram.

If the Figure I is redrawn as in Figure 2, then it can be interpreted as an ITT
implementation as shown in Figure 3.

x DPnFI X W~

DEDAY[(L)

Figure 2. Coherence estimation block diagramn (reinterpretation).



x B) PF1

DPF1,1 DE1LAYRA 

Figure 3. Coherence estimation block diagrain using the FFT.

But this FFT has a poor resolution. To obtain a better resolution, anl AR model

is desirable. This approach is shown in Figure 4.

OPFI DPF M

111: D11171P,11ELAY *A f

Figure 4. Coherence estiniation block diagramn using an AR model.

Figure 1 and Figure 4 represent two different schemes to compute the coherence

function. Diflerential time delay and Doppler difference can be estimated by using AR

models in the modeling of the coherence function.
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111. AUTOREGRESSIVE (AR) MODELS

A. AR MODELING
If the following difference equation is satisfied, the resulting structure is called an

AR model oforder p. [Ref' 3: p. 1771

p

x(n) - -Lax(n - k) + u(n) (3.1)
k=1

where x(n) = the signal at instant n,

u(n) = the white noise driver, and

a, = the k th coefficient of the AR model.

A realization of the AR model is illustrated in Figure 5.

u(n) --- )

Observed
Sequence

AR

ap * * *a 2  a1

-7 -

Figure 5. AR filter of order p.
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B. ADVANTAGES OF THE AR MODEL

The motivation for parametric modeling of random processes is the ability to obtain

better spectral estimates based upon the model than estimates produced by classical

spectral estimation. Both the periodogram and correlation methods can be used to yield

Power Spectral Density (PSD) estimates. The unavailable data or autocorrelation se-

quence (ACS) values outside a given window are assumed to be zero. This kind of an

unrealistic assumption leads to distortions in the spectral estimate.

The advantages of the AR approach are

I. AR spectra tend to have sharp peaks, a desirable feature of high resolution spectral
estimators.

2. AR parameter can be obtained as solutions to linear equations.

C. POWER SPECTRAL DENSITY

Eq. (3.1) can be rewritten as follows

p

x(n) = - ak\(n - k) + u(n)
k=1

-- hu(n - k) (3.2)

where h, = the causal filter impulse response.

Let us take the Z -transform of Eq(3.2).

X(Z) = lt(z)U(z) (3.3)

Rewriting Eq. (3.1) as

p

-"a k~x(n - k) = u(n) (3.4)
k--0

where a0 = 1, and taking the Z -transform gives

A(z)X(z) = U(z) (3.5)

Eq. (3.3) and Eq. (3.5) can be solved to obtain H1(z)



1(z) = fi3.6)

and hence

U(z)(z) A- (3.7)

The Z - transform of the output sequence {x(n)) is related to the Z - transformation

of the input random process u(n) by [Ref. 4: p. 561

U(z) U( .4-)
p .( ) = X(z)X*( A) = ()= p4(z) (3.8)*

The AR power spectral density is obtained by substituting z =e¢1rr into Eq. (3.8)

and scalin2 it by the interval T.

PAR(f) = TP, Tp.I2  (3.9)A~f) 11' ep(f)aa e,(1)

where c, = [1le-;"7, .... e-j2 74r'I

a = [ al,a.. ..,a,]T

p= variance of driving sequence.

D. BURG'S ALGORITHM

In practice. the autocorrelation is usually not available, so one must make an AR

spectral estimation based on the available data samples. The simplest procedure to ob-

tain an AR spectral estimate from data samples would be to produce estimates of the

autocorrelation sequence from the data. These autocorrelation estimates would be used

in lieu of the true autocorrelation sequence in the YULE - WALKER equations to yield

the AR coefficients. Hlowever better results are obtained, particulary for short data

segments, by algorithms that obtain the AR model parameters directly from the data,

without explicitly estimating the autocorrelation function.

The Levinson recursive solution to the YULE - WALKER equations relates the

pth order AR parameters to the p - I th order parameters as given by [Ref. 3: p. 211 1

ap(n) = ap-.(n) + kpa;_1 (p - n) (3.10)

9



For n = 1 to n = p - 1, the reflection coefficients k. can be found by using the

known autocorrelation function for lag 0 to p - 1. So we have

p-1

- 7ap,(n)r.x(p - n)

k= a(p)= PP-(3.11)

The recursion for the driving white noise variance is given by

p, = pp-I(I - Ikp12) (3.12)

where P, = r,,(0).

But the ACS is not available, hence we can not calculate the reflection coefficients.

The Burg algorithm provides an cqtimate of the reflection coefficients which in turin are

obtained through a least squares criterion.

The forward linear prediction error is given by

p

ef(n) = x(n) + -4in)x(n - m) (3.13)

while the backward linear prediction error is given by

P

ep(n) = x(n - p) + Za- *(m)x(n + n - p) (3.14)
/2 IP

Substitution of Eq. (3.10) into Eq. (3.13) and Eq. (3.14) yields the recursive relationships

e(n) = e-,(n) + kep_,(n - 1) (3.15)

ep(n)=ep_ I (n - 1) + k 1 (n) (3.16)

At each order p, the arithmetic mean of the forward and backward linear prediction

error power ( sample prediction error variance) is given by

10



N

e "L- I ' [, +- L Z ep(n)12] (3.17)
" n=p+l n=p+l

This expression is minimized, subject to the recursion given by Eq. (3.15) and Eq.

(3.16). Thus, p ' is a function of single parameter, namely the complex valued reflection

coefficient k,. Setting the complex derivative of Eq. (3.17) to zero

ap", j =0(3.18)
ORe(kp) +  ,m(kp)

and solving for k, yields

-_ , (n)e_ (n - 1)

k~p Y (3.19)
kp I .N "

n--p+l n=p+l

The estimation of the reflection coefficient represents the HARMONIC mean be-

tween the forward and backward partial correlation coefficient, where

e'(n) = e(n) = x(n) and V = number of data points.

E. FINAL PREDICTION ERROR (FPE) CRITERION

Because the best choice of filter order is not generally known a priori, it is usually

necessary in practice to postulate several model orders. FPE is a kind of criterion -.hich

was provided by Akaike (Ref. 3: p. 230]. This criterion selects the order of the AR

process so that the average error variance equals the sum of the power in the unpre-

dictable part of the process and of a quantity representing the inaccuracies in estimating

the AR parameters. The FPE for an AR process is defined as

^ N\+(p+l1)
FPE(p) + (p +1) (3.20)

11



where N is the number of data samples,

p is order of the filter, and

p, is the estimated white noise variance when using a p th order filter.

The order p selected is the one for which the FPE is minimum.

12



IV. DOPPLER AND DIFFERENTIAL TIME DELAY ESTIMATION

A. DOPPLER ESTIMATION

Let x(i) and y(t) be the signals received by two sensors

x(i) = cos[27(f+ a)t} (4.1)

y(t) = cos{2itcf+ 02)t} (4.2)

wheref is the carrier frequency,

o.,, -t are Doppler shifts, and
i is the time variable.

Let f be the sampling frequency which satisfies the Nyquist theorem. For con-

venience, in all derivations and simulations a sampling frequency of 64 Hz is used. to-

gether with band pass filter width of I Hz. We assume that I., I <0.5 ( i=1,2

which implies that the signals stay in the band pass filter regions of their respective band

pass filters regardless of any Doppler shift. Note, these values can be modified to arbi-

trary sampling rates and pass band regions. The sampling rate is given by

f, > 2f+ > 2(f+ -) ( i=2 ) (4.3)

The phase at instant k and sampling time interval T are given by

2r(f+ x)k

xk f f (4.4)

27rff+ 0.2)k
yk f (4.5)

T- (4.6)

Let x(n) denote the sampled analog signal x(t) ,T=nT then

x(n + m) = cos{27r(f+ a1) - + '0.) (4.7)

13



v(n + in) = cos(2irf+ a 2) + yOMI (4.8)

The derivations of Eq. (4.7) and Eq. (4.8) are given in Appendix A.

These signals, (x(n)) and fy(n)), are processed to detect the Doppler difference

Let BPF1 be the band pass filter centered atf and BPF2 be the band pass filter centered

at f, (where f 2 might equal f ). N data points are processed in the band pass filters, to

generate one output. The inputs to BPFl and BPF2 at time m are vectors X,(n) and

Y,(n) , respectively. The size of the input vector to the filter is the number of data points

taken during I second (i.e., the number of points processed in the filter = N =f ). The

input vectors are denoted by

Xm(n) = [x(in), x(rn + 1) ......, x(m + N - 1)] (4.9)

Ym(n) = [v(i),y(m + 1) ....,y(m + N- 1)] (4.10)

The filtering is performed using FFTs , where successive FFT outputs are generated at

the input data rate. The BPF2 output is conjugated.

To avoid the complexity the following four complex constant variables are defined.

N-1

AX nYcosf2(f )eJ2f (4.11 

N-I

B = sin{2r(f+ a 1) )e '2 '- T (4.12)
n=o

N- I

A, = Zcos(2nrf+ o.,) 'n}~ff (4.13)
N-1

By si27+ (4.14)
n=O

At instant m the complex output signal of BPFI can be calculated as follows

14



:V-I

X,) = Zcos(2,7t(f+ LX) L + Xo,,e- N
?,=OA
X-I

= cos{27r(f+ ) } cos 0 - sin{2,r(f+ a ) - )sin ,O,,]e-i 2 f-T

N- I -

c) -j-}e 2 T n -2->2(
ox, o scos{2 7(f+ .) e sin XO sin{ 27-(f+ a,) e " N

=o n=O (4.15)

= AX COS x4 m - Bx sin x,.

+ _- ________-e-_
= AX 2 - 2Bj -

___+_ A-' -j4 IPh

A,+B~ fl A~JB( -j2o'
l, +,+ e

The complex signal 'X4) contains two frequencies with different amplitudes.

To understand the character of .,.0 , it is important to evaluate which is the

dominant term in the above expression.

N-

AI +jBX = cos{2nr(f+ o) } j sin{2,-r(f+ o) " }1e-2'f"

n=O
,N-- I

= d2r '¢f +  = - j 2 "-': "T

n=o (4.16)
N-1

n=O

C121Z21



A -jB= [ cos{21(fr+ a,) Ts } -j sin{2r(f + o.)l- 's )]e-j"-f--

n=0

e -j2,-f -,,) 40-e- -j2 -f -a-

n=0 (4.17)

= - jZ : (2f+2l

n=O

S- e -j2(2f+2

From Appendix C

1.4, +jB:, > I~ - j Yx 1418

Therefore , e. cm is the dominant term of X.,(f).

In similiar way, the complex output signal of BPF2 can be calculated as follows

V-I

Ym"I) = 'cos{2Zr/f+ ,.,) f- +ymd
C\ 1

Scos2r.(f+ ,) J cos y t, - sin{2r(f+ -/ 2 ) sin yOJe/27iT

17=00

N- \ - l

- c}sS..,cs{.-- } -' _ siny,, S sn2:%(f+ .)"}-2-

'1=0 t4.19)= AY cos yv,, - By, sin y4 ,,

e ,l ) + e %- + -  e J , ' ._ e , -
=Ay 2 BY 2j

____ Ad,-jB vA V +jB v  6f, , + A. -A e j,6

2 2
A, +jBv 26 m 2 A -jB -22)

e -2 ,'"+ " e2 2

The complex signal )'W) contains two frequencies with different amplitudes.

16



Even though 1,',(j) is sirniliar in form to X,(J). it is not obvious which term is dom-

inant.

y-I

A). +jBy = cos{2r(f+ 42) } +j sin{21r(f+ 02) n }]ei2-fn

11=0

I 2 "- (2
4+ 

:t,
) I.

1-c "N

,.y-jiy Z[ cos{ 20+ O2 ) }-j sin{2% (f]+ N)y-}

S(f e2 -f

n (4.21)

e

r,=o

I-e- j 2 r-e

From Appendix C

I v mj&. > I Ayv+jByl1 (4-.2

Therefore 2 e,m is the dominant term of K. (J.
2

17



Since the two output sequences {XJ} and t Y.(f) have two sinusoidal components

each, their product {XLfY,(} has four sinusoidal components. The four frequencies

are

(_1 - C2) ('2 (2f+ a 2 ) (2f+ o1, + 0'2 ), ( 22 ,=o23r fi 2Af , oA=-2r

with co, the sinusoid with the largest amplitude and rj2 the sinusoid with the smallest

amplitude.

The product of the output of the filters is given by
A +j__ _-Bv -

2J J 2 2 +F((i,,2 2,3x)myO,n)

(.4 + j 4r)(A ,. -jB ,) + F ( .1 .2 1 x m . A ).23)
4 " x

where F.v, Y,. ,6, , represents the three low amplitude frequency terms.

When using the AR model as described in chapter III. at a high S.\R ( i.e.,

S.R --+ oo ) , a 4th order AR model detects all of the four frequencies given above.

When the SXR is low (i.e.. 20 dB ), only one dominant sinusoid is detected with fre-

quency

27,(f+ I) 2i(f+ 02)
( - a21(-4.24)

CO 2 - - 21 A

Since we can detect w, and know the value off , a, - o-2 can be estimated by using an

AR model.

B. DIFFERENTIAL TIME DELAY ESTVIMATION

To detect and localize a target, it is important to find the differential time delay of

signals arriving at two sensors. Let us assume that signals at the two sensors are as

given in Figure 6 ( i.e.. zero differential time delay ) For the remainder of the figures. the

time a'is is scaled to be 64 points per second.
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a. Special case.

For our test case the data duration is six seconds, two seconds of the noisy

signal and four seconds of noise only. Linear transformation of this data leads to one

of three types of outputs. The first type represents full information, while the second

type represents partial information. The third type represents a noise only condition.

Generally when two signals are lined up in time, the AR model should give the highest

output power. But this is wrong in some cases. In the full information case, the mag-

nitude of transformed signal is high and constant. For some reduced information case.

even though the magnitude of the transformed signal decreases, it still may have large

magnitude of spectral components. This phenomenon can be explained as follows.

Define two functions depending on k

AN- I -k

kAy cos(27f 2 - -)e'f_' (4.5)
n=O

kBY. : :Z sin(2irf 2 nfs 24--)e" :f (4.26)

where f2 =f+ a2.

A denotes the number of lost data at BPF2 input vector.

We assume that we know when the BPFI signal starts. If this information

is not available, we need to examine the signal at the output of BPFI. to obtain a can-

didate time frame. Consider the input of AR model as shown in Figure 7.

The input data size to the AR model is the number of linearly transformed

data points during a given period (i.e., input size is N =f ). The BPF1 output represents

full information (i.e., each output element is produced from the signal information

points). Therefore. as shown in the previous section, the dominant output sequence is

k e ,  ' ,  k e 4' 2, kleJ' 3,. ..... , ke' ' (4.27)

where

k, (4.28)
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BPF1-

(X AR

BPF2 * DELAY y] (I)
Y(k m+d

Figure 7. AR model and its driver source.

(I) 0 second delay case. We already defined the input vector XQn) and

Y}(n) to BPFI and BPF2. This vector can be interpreted as a time snap shot. Each

output of the BPF requires N input points. If we require N output'points from the BIT,

even using maximum overlap in the processing, we require at least 2N - I points at the

BPF input. Figure 8 shows the 2N input to BPFI and BPF2. Both 2N input points

contain the signal and some noise. As shown in Figure 8, in the zero delay case, the two

input vectors Xm(n) and 17,(n) ( 0 < m _< N ) provide full information. So the lin-

early transformed output X(,) and K (f,) also represent full information.

The dominant part of the BPF2 output is the sequence

k 2 e e-, k e Je -, k2e k2, e-',3,. ... k2ee - J'. , 'v-  (4.29)

where

I 1 -e J

k2 - eJ 2 2 -  (4.30)
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Figure 8. Two signals, 0 second delay at the sensors.

The dominant input sequence to the AR model is given b,,

{kike )(xOO 6k ) , k = 0,1.2....-. } (4.31)

where the magnitude is k~k,

'2) -1 second delay case. Figure 9 shows the 2X input to BPFI and

BPF2. The 2.V input data points of BPFI contain the signal and noise. During the first

N points the input to BPF2 contains the signal plus noise while during the second N

points only noise is present. The input vector X(n) of BPF1 contains full information.

but input vector Ym(n) of BPF2 does not contain full information. In the )*,(n) case,

ever. element of Y,(n) is full information. But when k is not equal to zero then Y,(n)

consists of N - k information elements and k noise elements.

22



O 40 SO120
IME

WO-
6.

0 40 S0 120
TIME

*Figure 9. TwNo signals. - I second delay at the sensors.

The output from BPF2 represents partial information while the out-

put from BPF1 represents full informnation. The BPF2 output sequencc is given by

2A il e'y 6 k + 2,1 _kb e jy~k, k~ = .. XN- 1 ) (4. 32)

The derivation of Eq. (4.32) is given in Appendix B.

Assuming that *2~-B e-,'yk is the dominant term, which is a valid assumption for our

test case with f = 641Yz, f = 23Hz, a, = 0.4Hz and a, = 0.00 1Hz, then the input se-

quence to the AR model is dominated by

(,kAY JkBy ki*'kk k=0,l,2 .... - l) (4.33)

with k, is defined earlier ( Eq. (4.2S) )
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The magnitude of dominant input sequence is obtained by examining

N-I -k

kAy -JkBy = 1 cos{2ir(f+ c.2)) -j sin{27(f+ a2 }] 1

k=0 (4.34)
N-I-R

= -J 2 -012 n

n=O

1e 22

When we compare the magnitude of the sequence in Eq. (4.27) and the magnitude of the

dominant term in Eq. (4.32), the magnitude of I k, I AA -jB , 1/2 where

l .1 -e "' 2
k2 " - '-  .f

e) 1 7

and

Iy -J;B , - I 1 - e-J "" v
2e -- - J 2 (4.35)

1 iO 1 ih
2T -j2- 1

1  -e
-
2 2 . 2 1-- -e 2 2

We note that Eq. (4.35) has two frequencies (i.e., 0 and 2 ).

The magnitudes of both terms are I
Ii -I1I - e-J2"27

Now, note that as long as I ,2 1 <-L-, then the magnitudes of both terms in Eq. (4.35)

are larger than I k2I

Due to the symmetry a positive delay results in a similar reponse to a negative delay, and

hence Eq. (4.35) holds also for delay of + I second. Equation (4.35) can be interpreted

as having large responses at shifted Doppler values at a delay of 1 second and a delay
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of-i second. Proper delay can not be established nor can the Doppler value be estab-

lished. This cross power spectrum algorithm will not give good information about either

Doppler difference or time delay.

b. Aodified cross power spectrum.

To detect the signal, input signals to the AR model should be preprocessed

as shown Figure 10. If the BPF2 output signal is magnitude normalized, then this nor-

realized signal retains good phase information. When Ae normalize the BPF2 output,

one of two conditions can occur. The first condition ( i.e., synchronized ) leads to the

magnitude normalization of Eq. (4.29) and provides accurate frequency and delay esti-

mation. The second condition occurrs when the signal in channel-2 is not lined up in
time with the signal in channel-I ( i.e., during the delay search ). Under this condition

smaller peaks in the time Doppler plane appear at incorrect values of time delay and

Doppler. Above 70 dB SXR, the correct peak is the dominant one and allows proper
estimation. Information from contour plots can be used at values of SNR between 70

and 10 dB ( see Appendix D ).

X(n) BP X, (Q

I Y,*(Q,)

Figure 10. Modified cross power spectrum block diagram.

2. Differential time delay and differential Doppler estimation using the coherence.

Another way detecting the signal is normalization of the AR output with the

squared root of the product of Pf(/) ( auto spectrum of x ) and P,,w (auto spectrum of
y ). This can be done using two additional AR models as shown in Figure 11.
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y (n) BPFZ DELA WA FFT

Figure 11. AR model of coherence.

Using the AR approach, p.. , , , and AR coefficients can be ob-
tained. Therefore we get

-XV TpXX (4.36)
1 Axf) 2

_yy TPY(437

PYx(f) - 12X (4.37)
I A /])w1
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Tp):
PyyUf) = TPV(4.37)1.4yyV) 12

Tp .

= 2 (4.38)
w rAe yxt) p2

where P(f) is the power spectrum of X,
P,,(6 is the power spectrum of 17,

P,..(J) is the power spectrum ofXIYL,

A,,(J) is the AR power spectral density of X,

AW() is the AR power spectral density of IYld,

AAI) is the AR power spectral density of' XVI' cross term.

p , is the driving noise variance of, ,

pY. is the driving noise variance of 1',
P.,:, is the driving noise variance of A"' -d and

1

We obtain a coherence estimate from the three power spectra, by assuming that

^2 IPIP ' 1 I

I PT - ( /)  1 1 H'4(f) 2  (4.39)

I Pxx () Pyy. f) I T Px_,Pyyv 1.4xy, yV)

A p xyv I Ax. ff)Ayy ) 12
S P y I AvyC1 (4.40)

This approach provides good information about the differential time delay and

differential Doppler down to SNRs of 20 dB.
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V. RESULTS

This chapter presents graphical results obtained by applying the analytical results

of the previous chapters to specific examples and carrying out the required computations

on the computer.

A. AR MODEL

This section provides the AR model performance tests. As we discussed in chapter

III, Burg's algorithm is applied to this AR model. The FPE criterion is use to find the

AR model order. Figure 12 is the power spectrum of two test signals sin(CoTn) and

cos(co, Tn) . Figure 13 shows the power spectrum of two other test signals sin(w, Tn) and

cos(cj 2Tn). Both sets of test signals in these figures have an S.VR of 20 dB. The fre-
quency fis 13 .45 Ilz andf, is 2..45 Hz and Tis --- second.

quencf~ -64

Theoretically. the power spectrum of these signals have two impulse functions at f

and -f ( i2 12 ). Figures 12 and 13 show experimental results agreeing with the

theoretical results. Figures 12 and 13 indicate which frequency has high power but they

provide no phase information.

The AR model is sensitive to frequency but is not sensitive to the phase. For any

selection of frequency f which satisfies the Nyquist theorem, the AR model provides

good frequency estimation provided the S.VR is sufficient large.
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B. DOPPLER ESTIMATION

In section A of chapter IV, we discussed five items.

1. BPF1 and BPF2 outputs have two sinusoidal components each.

2. For BPFI. the dominant frequency is designated as co, and for BPF2. the dominant
frequency is designated as o, where

2,z(f+ o,.I)

-2r(f + a2)

coy 7

3. The power spe'ctrum of cross term of BPFl and BPF2 has four components which
can be detected in very high S.\R (i.e. SXR = 100 dB).

4. When the S.YR is low (i.e. SNR = 20 dB). only one dominant frequency compo-
nent is detected.

5. The dominant frequency of the power spectrum P,),,(f) corresponds to the differ-
ential Doppler frequency.

Figure 14 shows the power spectrum of the BPFI output when f is 13 H:. 0, is

0.45 H1:. and f is 64 Iz. Figure 15 shows the power spectrum of the BPF2 output

when f is 13 11z. : is -0.45 Hz. and J is 64 lz. As expected both figures show two

spectral lines when the S\R is 100 dB. The dominant frequencies are located atfequal

13.45 I- for BPF1. and atfequal -12.55 Hz for BPF2. Figure 16 shows the power

spectrum of the cross term of BPF1 and BPF2. This figure shows four spectral lines at

an S.VR of 100 dB. while only one dominant frequency is detected at an S.VR of 20 dB.

Dominant frequencies are always located between -1 Hz and 1 Hz. Figure 17 shows

a subplot of Figure 16 for frequency between -1 Hz and I lz. This figure shows the

dominant frequency f= .9 ltz and the smaller spectral component at f-, -. 9 Itz for an

S.\R of 100 dB. Only one dominant frequency can be detected atfequal 0.9 Hz for an

S.VR of 20 dB. Doppler difference from the dominant spectral component corresponds

to the true Doppler difference ,, - 7, which is 0.9 Hz

Figure IS shows a comparison for SNR of 20 dB and 10 dB. Figure 19 is subplot

of Figure IS for -I Hz <f< 1 iz. From this figure, when SVR = 10 dB, the dominant

frequency is shifted a little bit from the true Doppler difference. We have shown the five

issues as we have discussed in the previous chapter. In summary, for SVRs greater than

or equal to 20 dB. the power spectrum of the cross term provides good Doppler esti-

mation.
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C. DIFFERENTIAL TIME DELAY ESTIMATION
In Chapter IV section B.l.a we discussed the problems associated with using un-

normalized quantities and suggested two possible approaches to solve the problem. In

this section we will show that for the case of Iv, I <' :" , the power spectrum of a

nondelayed signal is smaller than the power spectrum of a signal delayed by one second

(i.e., see discussion following Eq. (4.35)).

To estimate the time delay, we suggest the two different approaches. The first ap-

proach is the normalization of the BPF2 output. The second approach normalizes the

cross term Pm(D with the power spectrum of BPFI P,,(J) and the power spectrum of

BPF2 P,/f through the equation defined by Eq. (4.40).

The following figures are simulations for f= 23 l1z, ac, = 0.23 Hz, o,2 = -0.02 Hz,

T= -= second. delay of 0 and an S.VR of 100 dB. Figure 20 shows the surface plot of
64

P,,, (f) while Figure 21 shows the contour plot of P,,(). Figure 22 shows the cross

section plot of Figure 20 with respect to the DELAY axis. This figure shows that the

power spectrum has a spurious peak at delay of one second. At the proper delay (i.e.,

0 second delay) PV,(/) has a relatively small value.

P,,() is affected by two terms. namely p, and 1 Figure 23 shows the

maximum power spectrum term of the transfer function and Figure 24 shows the driving

noise variance. At a delay of + I second and of 0 second the transfer function shows a

peak while the variance of driving noise has small value. In this case, P,,(f), the product

of the form pre. 1 at 0 second delav has a smaller value than that at any other

delay location. Usitig the scheme shown in Figure 10, we normalize the BPF2 output

and present the result in Figure 25. We can detect the proper time delay and the proper

Doppler difference. Figures 26 and 27 show the corresponding contour plot and the

power spectrum of the normalized cross term. For any value of time delay and Doppler

difference, this approach provides good information about differential Doppler and dif-

ferential time delay provided the SXR is greater than or equal to 70 dB.

Results of the second approach ( Figure II ) are demonstrated in Figures 28 and

29. This approach also gives good information about differential time delay and differ-
ential Doppler. This approach provides good time delay and Doppler estimation for

SNR greater than or equal to 20 dB.

If we use the contour shape, we can also estimate the differential time delay and

differential Doppler for SA'R of less than 20 dB. Differential time delay and differential

Doppler estimation can be extended down to SNRs of about 0 dB when using the con-
tour of the coherence surface. Figure 30 is a contour plot of using this second approach
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(i.e.. coherence approach ) for a = 0.23 tlz, c = - 0.02 Hz, Delay = 0, and an SNR of

0 dB. The contour shape of the second approach has the shape of the letter X. When
the S.VR is greater or equal to 0 dB, the proper time delay and Doppler difference seems

to be located at the cross over point of the X. When the SNR is less than 0 dB. the
contour shape does not shows an X clearly. In the coherence approach, Figure 31

provides the contour plot, with channel-I containing only noise and channel-2 contain-

ing signal plus noise ( SNR = 0 dB ). Figure 32 shows the contour plot, when channel-2

contains only noise and channel-I contains signal plus noise ( SYR = 0 dB ).
Figure 33 shows the contour plot, when both channels contain noise only. The above

three figures do not show an X clearly, hence do not allow signal detection for esti-

mation of any parameter. Using this information, we can distinguish the signal combi-

nations from the noise combinations.

When we estimate the time delay and Doppler difference using the contour plot. the

modified cross power spectral approach has some problems as discussed in

Appendix D.
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VI. CONCLUSIONS AND RECOMMENDATIONS

In this thesis, the diffierential time delay and differential Doppler are estimated using
two different approaches. The first approach uses a modified cross power spectrum al-
2orithm while the second approach uses a coherence algorithm. In both cases
autoregressive modeling of the required cross spectral component is used. The differen-
tial time delay and Doppler difference can be estimated using a threshold at high SNRs

and a contour plot at low SXRs.
At high S.VRs ( i.e., S.VR > 70 dB ), the first approach locates the dominant peak

at the proper time delay and the proper Doppler. The second approach utilizes two
additional AR models and two additional FFTs to obtain the autopower spectrum of
channel-I and channel-2. At moderate SNRs ( i.e., SNR > 20 dB ). the second approach
has the highest coherence peak at the proper time delay and Doppler frequency. When
the SXR 2! 0 dB. the contour plot of the coherence has the shape of the letter X. The

differential time delay and Doppler difference can be located at the cross over point of
the X. In high S.VRs we can use the highest peak to detect the time delay and Doppler

frequency using either approach. When we use the contour plot, the information about
time delay and Doppler depends on the location and the form of the cross over point

of the X.
We can estimate the differential time delay and differential Doppler using the AR

modeling of coherence. But we can not get the numerically correct value of the coher-
ence coefficient. The following three points are recommended for future study.

1. To get a cross power spectrum, we assumed that I P,(f/)- I(P,(f) I This was
required since we can not get a cross power spectrum using an AR model. Im-
provement of the cross power spectrum estimates using an AR model can lead to
improvement of the algorithm.

2. Our first approach is not normalized by the auto power spectra. If we find the
corresponding auto power spectra, we can also obtain a coherence coefficient esti-
mate.

3. To get a better information at a low SA'R, we need to study the characteristics of
the contour plots.
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APPENDIX A. PHASE DERIVATION

Define the phase at instant k.

27,(f+ a1)kx4 fs (4.4)

21z(f+ OC2)ky~k = f (4.5)
A

Let x(n) denote the sampled analog signal x(t) Itr

then

x(n) = cos{2r-t(f +) }

= cos{2n(f+ o-) s + X  (a.1)

x(n + 1) =cos{2i(f+ a P + 1

+ 27(f+ 01) (a.2)
7S A

= cos{2z(f+ o) - + x 11I
f1

x(n + 2) = cos{2i(f+ a,) 2
A
n 2(f+ o. 1)2 (a.3)

= cos{2'r(f+ oc) + + o(

= cosf21r(f+ o.,) n + X02}

x(n + m) = cos{2iz(f+ ,2) n + MA
n 2it(f+ cz1)m7= cosf 27(f + a,) + irfs+I~ (4.7)

A
= os'2, qf+ 0.1) + On,,,

Sirniliarily
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y(n) = cos{27n(f+ 0'2)(a)

= Cost 2rTV+ 0(2) + YO}

y(n + 1) = cost27r(f+ c,2) n }

= cos{21r(f + a2 ) y L + ( 02) (a.6)

= COS{2ir(f+ 0'2) + v02}

v~~~~~~n + 2)=c{2f±2)n2)

yn2= cos(2;T(f+0a2) +T~±a2}(77

= cos2ir~f(f2) '2)2

vn+n)=cos{27,(J+ C/2) n } a

= cos{27-,f+ a2) 0~ irf 2)n(48

= cos{2-(f+ c,) -L+ (4.8)}
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APPENDIX B. OUTPUT OF BPF2

Define two functions depending on k

N- I -k

k-4 y = cos(2rf2 n- )"-f (4.25)
n=O

N-I-k

kBy= sin(2rf2 '!)e2f (4.26)
n=o

where f2 =f+ c,.

A. FULL INFORMATION CASE ( N POINTS)

N points are data points at BPF2 input.

.S

= cos(2, - +cos - sin(2f 2  sinsi

= CO on,7 cos(2r-f2 Y1)'~ sin,0,,7Ysin(2irf2 )e~~ N bI

L-- I . L d . (b 1

= .4y CO y-m - sn2sin .4m

{) iOS2n'f e CO e'.'m ye1 A"' ' ' .'

O= y 2e 2 M= 0,AY 2 - oBy 2j

0Ay ./oB, 0A,
• -joB

- +
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B. PARTIAL INFORMATION CASE ( N-1 POINTS)

N - 1 points are data points at BPF2 input.

I Zw cos(27rf 2 : - + efI 2f Von,

n=0
N-li-i 1 " n

= Z {cos(,.r'f2 _)COSyfm sin(2rf2 _3k)

n,=0

.V-i-i N--i

=COSm ol, COS )e - sin Yom sin(27rf 2  )e
n=O n=O

= iAy cosY0., - 1By sin y.

=AY e - 'B" 2B1"
-, 2j

1.4,, + j B,, .o, 1A, -jlB .,
2) 2

C. PARTIAL INFORMATION CASE ( N-K POINTS)

N- k points are data points at BPF2 input.

.- 2 -k
*,W cos(2rf - +

=Z {cos-(2!f 3k) COS 0.m - sin(27!1 3k sin ot- ?.r 6j iv
S-k .'--k

=COSydm , co(2tf 2 N) sin yom sin(2 -f2 n )e-j (b.3)
A; n=0A

= k4y cos, - kBv sin yOm

ei ,. + e-J° , d,. e-,,
kAy k - ,By 2j

kAv +Jk BY 1 ,,, kA, -jkB, _jo
2 2
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APPENDIX C. AMPLITUDE COMPARISON

Let C, and C2 be the complex amplitude.

I - eN '

I -e
- 2ru

C2 = (c.2)I - j 2 -,(2f + 3c)
eN

where I o. I < 0.5, and N > 2f+ 1 > 2(f+ c). The numerators of I C I and I CI are same,

because the magnitude of the complex conjugate is the same. If we show that

I1 - ee l I < I I - e-j2-nzf) I , then we can say I C, I >C I1. As shown in Figure 34

11 - e',2,LI = 1A1 and I i - e-21f--) I BII

Im

0O 1 Re

BB 091 2 T-r oe/N

(2=-2 T(2 f + U )/N

Figure 34. M\lagnitudes of tNo complex number.

2n(2f+ a) 2r(N - 2f- a) _2n(lI-a)

The smallest angle LIOB is N or ( a - N

For positivef

LJ'OB= 2N(r,+a) > I (-- = LIOA (c.3)
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Since I 1 -o > kl.

LIOB - 27(1 - a) > LIQA (C.-4)

From Eq. (c. 3 and Eq. (c.4) IA II < I BI ,therefore
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APPENDIX D. CONTOUR PLOTS OF MODIFIED CROSS POWER

SPECTRUM

For S.NRs greater than or equal to 10 dB the contour plot of the modified cross

power spectrum algorithm has the shape of a boomerang. The shape of the boomerang
depends on o.,. Figure 35 and Figure 36 show the contour plot of the modified cross

power spectrum. The two figures show the boomerang shape and their different di-

rections. For positive a2 ( case I ) and negative o.2 ( case 2 ) the opening of the

boomerang is toward the left and right, respectively. In the both cases, we can estimate
the time delay and Doppler frequency using these contour plots. The proper time delay

and Doppler difference can be detected by locating the point of symmetry of the

boomerang. The Figure 37 shows a contour plot when o-2 is -0.02 Hz. Since o,, is very

small, the contour plot looks like a straight line. In this case. the differential time delay
and Doppler difference can still be estimated by locating the point of symmetry of the
boomerang ( i.e.. center point ). Figure 38 shows the contour plot. when channel-l

contains noise only and channel-2 contains signal plus noise ( i.e., SVR = 10 dB ). Fig-

ure 39 shows the contour plot, when channel-2 contains noise only and channel-1 con-

tains signal and noise ( i.e., SVR = 10 dB ). Figure 40 shows the contour plot, when

both channels contain noise only. Using the modified cross power spectrum technique,
the three types of noise only set ups appear as siniliar plots ( see Figures 3S. 39 and

,40 . Figure 38 seems to indicate the presence of signals in both channels, while Figures
39 and 40 appear more like noise. Hence. contour plots of the modified cross power

spectrum do not allow clear identification. In this case, it will be diflicult to distinguish

between the noise only situation and a small o., situation.

To use the modified cross power spectrum algorithm at low S.N'Rs ( i.e..

SNR < 70 ), we need to investigate the contour plot some more.
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Figure 35. Contour plot of the modified cross power spectrum (case 1).
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Figure 36. Contour plot of the modified cross poowi spectrum (case 2).
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Figure 38. Contour plot of the modified cross power spectrum (noise in chiannel- 1

only).
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APPENDIX E. MODIFIED CROSS POWER SPECTRUM PROGRAM

C

c main program of approach one.
c this program share subroutine with *
c the main program approach two
C

COMPLEX X(-128:255),Y(-128:255),A(0:2500),B(0:2500)
COMPLEX BPFl(-128:191),BPF2(-128:191),BPF(0:100)
INTEGER SNR,BINDEL,DELAY
DATA X,Y,A,B/5770*(O.,O.)/,BPFI,BPF2,BPF/741*(O.,O.)/
OPEN(UNIT=7,FILE='FILENAME FILETYPE A')
PI=ACOS(-. )

C------------------------------------------------------------------------------------,

C
c input part
C
c fs - sampling frequency *
c f - carrier frequency
c alphal - doppler effect at sensorl
c alpha2 - doppler effect at sensor2
c delay - signal receiving time difference
c between two sensors
c SNR - signal to noise ratio
C iseed - noise generator seed(odd number)
c n - number of data during one second
c*
C "

c ----------------------------------------------------------------
FS=64.
F=23.
ALPHA1=.23
ALPHA2=-.02
DELAY=O
SNR=100
N=64
T=2.*PI*F/FS
ISEED=13

c ----------------------------------------------------------------
c *
c input data sampling at two sensors
c *
C---------------------------------------------------------------

CALL SIGNAL(X,F+ALPHA1,FS,0,SNR,ISEED,0,0)
CALL SIGNAL(Y,F+ALPHA2,FS,DELAY,SNR,ISEED,0,0)

DO 100 K=-128,191
DO 50 J=K,K+63
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c *

c linear transformation using band pass filter
c
o--------------------------------------------------------------------

OMEGA=T';FLOAT(J-K)
BPFI(K)=BPFl(K)+X(J)*CMPLX(COS(OMEGA),-SIN(OMEGA))

50 BPF2(K)=BPF2(K)+Y(J)*CMPLX(COS(OMEGA),SIN(OMEGA))
C------------------------------------------------------------------------------------

c
c normalization of BPF2 *
c

100 BPF2(K)=BPF2(K)/CABS(BPF2(K))
DO 300 BINDEL=-128,127

DO 200 K=0,N
------------------------------------------------------------------------------------

c*

c input of AR model
c *
C------------------------------------------------------------------------------------
200 BPF(K)=BPFI(K)*BPF2(K+BINDEL)

CALL CLEAR(A,B,2500)
CALL BURGAR(BPF,N+l,A,IP,VAR)
CALL CHANGEFFT(B,A,11,MAX)

DO 250 I=-32,-l
250 WRITE(7,997)BINDEL,FLOAT(I)/32.,CABS(1./B(2048+I))*VART

*,CABS(l./B(2048+I))
DO 300 I=0,32

300 WRITE(7,997)BINDEL,FLOAT(I)/32.,CABS(l./B(I))*VART
*,CABS(I./B(I))
CLOSE(7)
STOP

997 FORNAT(lX,14,2X,E13.6,2X,E13.6,2X,E13.6)
END
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APPENDIX F. COHERENCE PROGRAM

cC

c main program of approach two
c

COMPLEX X(-128:255),Y(-128:255),A(O:2500),B(0:2500)
COMPLEX BPF1(-128:191),BPF2(-128:191),BPF(0:100)
COMPLEX AUTOX(0:100),AUTOY(0:lO0),SUMXY
INTEGER SNR,BINDEL,DELAY
DATA X,Y,A,B/5770*(O.,O.)/,BPFI,BPF2,BPF/741*(O.,O.)/
DATA AUTOX,AUTOY/202*(O.,O.)/
OPEN(UNIT=7,FILE='FILENAME FILETYPE A')
PI=ACOS(-I.)

C --------------------------------------------------------------------
C
c input part
c
c fs - sampling frequency
c f - carrier frequency
c alphal - doppler effect at sensorl
c alpha2 - doppler effect at sensor2
c delay - signal receiving time difference
c between two sensors
c SNR - signal to noise ratio
c iseed - noise generator seed(odd number)
c n - number of data during one second
c
c----------------------------------------------------------------------*

ALPHA1=.23
ALPHA2=-.02
SNR=20
F=23.
N=64
FS=64.
T=2. *PI*F/FS
ISEED=23
DELAY=O

c --------------------------------------------------------------------
c
c input data sampling at two sensors
c

---------------------------------------------------------------------
CALL SIGNAL(X,F+ALPHA1,FS,A,SNR,ISEED,O,0)
CALL SIGNAL(Y,F+ALPHA2,FS,DELAY,SNR,ISEED,1,O)

DO 100 K=-128,191
DO 50 J=K,K+63

c----------------------------------------------------------------------*
c
c linear transformation using band pass filter
c

-------------------------------------------------------
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OMEGA=T-'FLOAT(J-K)
BPFI(K)=BPF1(K)+X(J)*CMPLX(COS(OMEGA),-SIN(OMEGA))

50 BPF2(K)=BPF2(K)+Y(J)*CMPLX(COS(OMEGA),SIN(OMEGA))
100 CONTINUE

SUMX=0.
DO 150 K=0,N

----- --------------------------------------------------------------------*
C *

c finC AR order at sensorl
c *

C-------------------------------------------------------------------------------------*

150 AUTOX(K)=BPF1(K)
CALL CLEAR(A,B,2500)
CALL BURGAR(AUTOX,N+1,A,IP,VARX)
CALL CHANGEFFT(B,A,l1,MAX)

XMAX=CABS(l./B(MAX))
DO 300 BINDEL=-128,127

DO 200 K=O,N
C-------------------------------------------------------------------------------------
c
c input of AR model
c
---------------------------------------------------------------------------------------------

AUTOY(K)=BPF2(K+BINDEL)
200 BPF(K)=BPFl(K)*(BPF2(K+BINDEL))
C------------------------------------------- --------- -----------

c *
c find auto power spectrum of sensor2 at delay k
c
C- ------- --------------- --------------------------------

CALL CLEAR(A,B,2500)
CALL BURG(AUTOY,N+1,A,IP,VARY)
CALL CHANGEFFT(B,A,1I,MAX)

YMAX=l./CABS(B(MAX))
C---------------------------------------------------MM--------------*
c
c find auto power spectrum of cross term
c
c--------- ---------- M-------------- M-----------------------

CALL CLEAR(A,B,2500)
CALL BURG(BPF,N+1,A,IP,VARXY)
CALL CHANGEFFT(B,A,1l,MAX)

XSMAX=(XNAX*YMAX)**2*VARX*VARY/VARXY*fs
DO 250 1=-32,-l

250 WRITE(7,997)BINDEL,FLOAT(I)/32.,CABS(l./B(2048+I))/SQRT(XSMAX)*8.
*,CABS(l. /B(2048+I))
DO 300 1=0,32

300 WRITE(7,997)BINDEL,FLOAT(I)/32.,CABS(l./B(I))/SQRT(XSMAX)*8.
*,CABS(l./B(I))
CLOSE(7)
STOP

997 FORMAT(IX,I4,2X,E13.6,2X,E13.6,2X,E13.6)
END
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C SIGNAL GENERATER
C INPUT
C N - NUMBER OF DATA POINTS
C F1,F2 - FREQUENCY OF 1ST,2ND SIGNAL
o AMP1,AIIP2-FREQUENCY OF 1ST,2ND SIGNAL
o OUTPUT
C A(N) - SIGANL,
C
C------------------------------------------------------------------------

SUBROUTINE SIGNAL(B,F,FS,D,SNR,ISEED,ID,NOISE)
COMPLEX B( -128: 255)
REAL A(0: 1)
INTEGER SNR,D
PI=ACOS(-1. )
DATA A/0.,0. /
SIGMA1l.
A(0)=SQRT(2. *10.**(SNR//0))

IF( NOISE. EQ. 1) A(0)=0.
DO 100 I=-128,255

M=( I-D)/128
IF(I. LT. D. OR. M. NE. 0) M1l
T=AMOD(F"--FLOAT( I-D) ,FS)
CALL GAUSS(ISEED,SIGIMA,0. ,RANDOM)
IF(ID. EQ. 0) THEN

X=COS( 2.*~PI*T/FS)*A(M)+RANDOM
ELSE

X=SIN( 2. *PI*T/FS)*A(M)+RANDOM
ENDIF

100 B(I)=CMPLX(X,0. )
RETURN
END

C------------------------------------------------------------------------
C
C BURG ALGORITHM
C INPUT
C N - NUMBER OF DATA POINTS
C X - INPUT SIGNAL
C OUTPUT
C IP - ORDER OF AR
C A(0:IP)- AR COEFFICIENTS
C VAR - DRIVING NOISE VARIATION
C
C -------------------------------------------------------------------------

SUBROUTINE BURGAR(X,N,A, IP,VAR)
COMPLEX X(N),A(0:N),EFK(500),EBK(500)
COMPLEX EFK1(500),EEK1(500),AA(20,20),SUMN,SUMD
REAL RHO(0: 80) ,FPE(0: 80)
INTEGER START
RHO( 0)0.
FPE(0)l. E64
A( 0) =CMPLX( 1. , 0.)
I P= 1
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START= 1
DO 10 I=1,N

10 RHO(0)=RHO(0)+CABS(X(I))**2/FLOAT(N)
DO 20 1=2,N

EFK1(I)=X(I)
20 EBK1(I-1)=X(I-1)

LOOP
K=I P

SUM4N=CMPLX(0. ,0.)
SUMD=CMPLX(0. ,0.)
DO 30 1=K+1,N

SUMfN=SUMN+EFKl( I)'*CONJG(EBKI( I-i))
30 SUMD=SUMID+CABS(EFKI(I)*2)+CABS(EBK1(I-1)**c2)
Co SUMD=SUMID+CABS(EFK1( I))-'*2+CABS(EBK1( I-1))**2

AA(K,K)=-2. *SUMN/SUMD
TEMP=1. -CABS(AA(K,K) )*2

IF(TEMP. LE. 0. ) TEMP=1. E-10
RHO(K)=TEMP*RHO(K- 1)
IF(K.GT.1) THEN

DO 40 J=1,K-1
40 AA(J,K)=AA(J,K-1)+AA(K,K)*CONJG(AA(K-J,K-1))

ENDIF
DO 60 1=K+2,N

EFK( I)=EFK1( I)+AA(K,K)*EBK1( I-i)
60 EBK(I-1)=EBK1(I-2)+C0NJG(AA(K,K))*EFK1(I-1)

DO 70 I=K+2,N
EFK1( I)=EFK( I)

70 EBK1(I-1)=EBK(I-1)
IF(N-K.EQ.1) THEN

FPE(K)=FPE7(K-1)±1.

ELEFPE(K)=RHO( K)*FLOAT(N+1+K) /FLOAT( N- 1-K)
ENDIF

I P=I P+ 2
UNTIL( FPE(K).GT.FPE(K-1).AND.K.GT.START-)
I P=K -1
DO 100 1=1,IP

100 A(I)=AA(I,IP)
~VAR-RH0( IP)
RETURN
END

C------------------------------------------------------------------------
C
C BURG ALGORITHM
C INPUT
C N - NUMBER OF DATA POINTS
C x - INPUT SIGNAL
C IP - ORZDER OF AR
C OUTPUT
C A(0:IP)- AR COEFFICIENTS
C VAR - DRIVING NOISE VARIATIO~N*
C
C------------------------------------------------------------------------
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SUBROUTINE BURG(X,N,A,IP,VAR)
COINPLEX X(N),A(O:N)',EFK(500),EBK(500)
COM1PLEX EFK1(500),EBK1(500),AA(20,20),SUMN,SUM D
REAL RHO(0: 80) ,FPE(O: 80)
INTEGER START
RH-O( O)0O.
A(0)=CMPLX( 1. , 0.)
DO 10 I=1,N

10 RHO(0)=RHO(0)+CABS(X(I))**~2/FLOAT(N)
DO 20 I=2,N

EFK1( I)X( I)
20 EBK1(I-1)=X(I-1)

DO 1000 K=1,IP
SUMN=CMPLX(O. , 0.)
SUMD=CMPLX(0. ,0.)
DO 30 I=K+1,N

SUMIN=SUMN+EFK1( I)*CONJG(EBK1( I-i))
30 SUMD=SUMD+CABS(EFK1(I))*'*2+CABS(EBK1(I-1))**2

AA(K,K)=-2.*'SUMN/SUMD
TEMP~l. -CABS(AA(K,K))**2

IF(TEMP. LE. 0. ) TEMP=1. E- 10
RH0(K)=TEMP*RHO( K-i)
IF(K.GT.1) THEN

DO 40 J=1,K-1
40 AA(J,K)=AA(J,K-1)+AA(K,K)*CONJG(AA(K-J,K-1))

END IF
DO 60 1=K+2,N

EFK(I)=EFK1( I)+AA(K,K)"*EBK1( I-i)
60 EBK(I-1)=EBK1(I-2)+CONJG(AA(K,K))*EFK1(I-1)

DO 70 I=K+2,N
EFK1( I)=EFK( I)

70 EBK1(I-1)=EBK(I-1)
1000 CONTINUE

DO 100 I=1,IP
100 A(I)=AA(I,IP)

VAR=RH0( IP)
RETURN
END

C------------------------------------------------------------------------*
C
C CHALNGE FFT
C INPUT
C B - AR COEFFICIENTS
C A - TEMPORARY USING ARRAY
C ISIZE - ALOG(FFT DATA POINTS)/ALOG2
C OUTPUT
C A - POWER SPECTRUM
C
C------------------------------------------------------------------------

74



SUBROUTINE CHANGEFFT(A,B,ISIZE,K)
COMPLEX A(0:2**ISIZE-1),B(0:2*ISIZE-1)
INTEGER REVRSE
PI=ACOS(-1.)
N=2**ISIZE-1
K=O
FS=FLOAT(N+l)

CALL FFT(N,ISIZE,A,B,FS)
CALL FINDMAX(A,N,K)

RETURN
END

C-----------------------------------------------------------------------
C
C FINDMAX
C INPUT
C N - NUMBER OF SPECTRUM POINTS(N+1)
C A - POWER SPECTRUM
C OUTPUT
C MAX - ARRAY INDEX OF MAXIMUM POWER SPECTRUM
C
C-----------------------------------------------------------------------

SUBROUTINE FINDMAX(A,N,MAX)
COMPLEX A(0:N)
MAX=O
AMAX=1. E66
DO 100 I=0,N

IF(CABS(A(I)).LT. AMAX) THEN
MAX=I
AMAX=CABS(A( I))

ENDIF
100 CONTINUE

RETURN
END

C ----------------------------------------------------------------------
C
C REVERSE
C BIT REVERSE ORDER INDEX CHANGING SUBROUTINE
C INPUT *
C N - ARRAY INDEX
C ISIZE - ALOG(FFT DATA POINTS)/ALOG2
C OUTPUT *
C REVERSE- BIT REVERSE ORDER INDEX
C
C ------------------------------------------------------------------------

IN-TEGER FUNCTION REVRSE(N,ISIZE)
INTEGER A(20)
DO 200 I=1,ISIZE

A( I)=MOD(N,2)
N=N/2

200 CONTINUE
REVRSE=0

DO 300 I=1,ISIZE

75



REVRSE=REVRSEIA( I )'*2*(ISIZE-I)
300 CONTINUE

RETURN
END

C
C DFT
C COOLEY - TUKEY ALGORITHM
C INPUT
C N - NUMBER OF DATA POINTS
C ISIZE - ALOG(N)/ALOG2
C A - BIT REVERSE ORDER INDEXED TIME DOIlAIN
C B - TEMPORARY ARRAY
C OUTPUT*
C A - FREQUENCY DOMAIN
C
C------------------------------------------------------------------------

SUBROUTINE DFT(N,ISIZE,A,B)
COMPLEX A(0:N),B(0:N),W
PI=ACOS(-1. )
DO 500 Il=1,ISIZE

ISAGE1=2**(Il-i)
ISTAGE=2**I1
DO 200 I=0,N

ITEST=MOD( I ,ISTAGE)
IF(ITEST.GT. ISAGEl) THEN

K=ITEST-ISAGE1
THEATA=2. *PI*.FLOAT(K) /FLOAT( ISTAGE)
T1=SIN( THEATA)
T2=COS (THEATA)

IF(ABS(T1). LT. iE-5) T1=0
IF(ABS(T2).LT. iE-5) T2=0

W=CMPLX(T2 ,-Ti)
A( I)=A( I)*W

END IF
200 CONTINUE

DO 300 I=0,N
ITEST=M1OD( I ,ISTAGE)
IF(ITEST. GE. ISAGEl) THEN

B(I)=-A( I)+A(I-ISAGE1)
ELSE

B( I)=A( I)+A(I14ISAGEl)
ENDIF

300 CONTINUE
DO 400 I=0,N

A(I)=B(I)
400 CONTINUE
500 CONTINUE

RETURN
END
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C
C FFT
C 1. INDEX CHANGE
C 2.USE COOLEY TUKEY ALGORITHM
C INPUT
C N - NUMBER OF DATA POINTS *
C ISIZE - ALOG(N)/ALOG2 *
C B - INPUT(TIME DOMAIN)
C FS - SAMPLING FREQUENCY
C OUTPUT
C A - FREQUENCY DOMAIN
C *
C------------------------------------------------------------------------*

SUBROUTINE FFT(N,ISIZE,A,B,FS)
COMPLEX A(O:N),B(O:N)
INTEGER REVRSE
DO 100 I=O,N

K=I
100 A(REVRSE(K,ISIZE))=B(I)

CALL DFT(N,ISIZE,A,B)
DO 200 I=0,N

200 A(I)=A(I)/FS
RETURN
END

C ---------------------------------------------------------- *
C*
C CLEAR
C INPUT
C N - NUMBER OF DATA POINTS
C A,B - INPUT arrays
C OUTPUT
C A,B - reinitiallized arrays
C
C ----------------------------------------------------------------------

SUBROUTINE CLEAR(A,B,N)
COMPLEX A(O:N),B(O:N)

DO 100 I=0,N
100 A(I)=B(I)=CMPLX(0.,O.)

RETURN
END
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10. Dean of Air Force Academy
Postal Code 370-72
Chongwon Gun. Cht. "g Cheong Bug Do,
Republic of Korea
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11. Professor Sug. Young Woo
Postal Code 370-72
Chongwon Gun. Chung Cheong Bug Do,
Republic of Korea

12. Professor Lee. Kvee 0
Postal Code 370-72
Chongwon Gun, Chung Cheong Bug Do,
Republic of Korea

13. Choi. Man Soo
SMC =1432
Naval Postgraduate School
Monterey, CA 93943
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